Endogenous Detection of Collaborative Crime: the Case of Corruption

I will show...

...what happens if we endogenise detection in a corruption game with asymmetric penalties.

You will see...

...surprising results of how (not) to deter corruption.

Consider three cases where $\alpha = 0.5$: If F > 10, then offend If F = 10, then indifferent If F < 10, then not offend. Therefore: optimal deterrence at min α and max F.

An orthodox Becker-type model² of corruption.

An Endogenous Detection Model.

Thank you!

Appendix.

- Tsebelis' inspection game
- Other equilibria

Tsebelis' inspection game³.

Payoffs of the inspector: $a \ge b$, $d \ge c$	Decision	Inspect α	Not inspect $l - \alpha$
$u_I > v_I, u_I > c_I$	Offend β	a_I	b_{I}
Payoffs of the offender: $b_I > a_I, c_I > d_I$	Not offend $1 - \beta$	C_I	d_{I}

Consider a raise in the penalty:

There is only one equilibrium – a mixed-strategy equilibrium. As F goes up, α goes down and β remains constant.

Thus, raising F max does not deter anymore.

³ Tsebelis, G. (1989) "The Abuse of Probability in Political Analysis: The Robinson Crusoe Fallacy". APSR Vol. 83.

For the eager people: 3 types of equilibria.

Whichever is lowest:

- The level of inspection **α** at which the entrepreneur is indifferent.
- The level of inspection $\boldsymbol{\alpha}$ at which the bureaucrat is indifferent.
- Or α = 1, as the meaningful boundary, since 1 reflects definite detection and any value higher than that is not intelligible.

